Zuschriften

Tungsten-Silylene Complexes

Hydrido(hydrosilylene)tungsten Complexes with Strong Interactions between the Silylene and Hydrido Ligands**

Takahito Watanabe, Hisako Hashimoto, and Hiromi Tobita*

The chemistry of transition-metal-silylene complexes has been extensively studied owing to their hypothetically important roles in many catalytic processes.^[1] Since the late 1980s a number of base-stabilized and base-free silvlene complexes have been synthesized and characterized. [1-11] Among these complexes, those that bear H atoms on the silylene ligand are particularly interesting because the Si-H bond could diversify the reactivity of the M=Si bond through its possible reactions, such as α-elimination, oxidative addition, and hydrosilylation. However, donor-free silylene complexes of this type only became known quite recently. Youngs et al. reported the generation of the cationic silylene complex $[(Et_3P)_3(H)_2Ir=Si(H)(2,6-Mes_2C_6H_3)]B(C_6F_5)_4$ (Mes = 2,4,6trimethylphenyl), [9] and Tilley et al. reported the formation of neutral $[\{PhB(CH_2PPh_2)_3\}(H)_2Ir=Si(H)(2,4,6-iPr_3C_6H_2)]$ and its interesting reactivity.[11] The isolation and structural characterization of such complexes have not yet been achieved.

We previously reported that the photoreaction of $[Cp^*Fe(CO)_2SiMe_3]$ $(Cp^*=\eta^5-C_5Me_5)$ with a relatively bulky H_3SiR' $(R'=tBu, (CMe_2)_2H)$ gave mononuclear dihydrosilyliron complexes $[Cp^*Fe(CO)_2SiH_2R']$. We have now applied this methodology to tungsten complexes and the much bulkier $H_3SiC(SiMe_3)_3$ ligand to synthesize the hydrido(hydrosilylene) complexes $[Cp'(CO)_2(H)W=Si(H)-\{C(SiMe_3)_3\}]$ $(1a, Cp'=Cp^*; 1b, Cp'=\eta^5-C_5Me_4Et)$. Here

^[*] T. Watanabe, Dr. H. Hashimoto, Prof. H. Tobita Department of Chemistry Graduate School of Science, Tohoku University Aoba-ku, Sendai 980–8578 (Japan) Fax: (+81) 22-217-6543 E-mail: tobita@mail.tains.tohoku.ac.jp

^[**] This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid for Scientific Research Nos. 14204065, 14078202, and 14044010).

we report the synthesis, isolation, and full characterization of **1a**, **1b**, a CO adduct of **1a**, namely [Cp*(CO)₃WSiH₂-{C(SiMe₃)₃]] (**2**), and the stoichiometric hydrosilylation of acetone by **1a**. The X-ray crystal structure of **1b** and theoretical calculations on a model compound of **1** are also presented.

Irradiation (24 min) of a solution of $[Cp*W(CO)_3Me]$ and $H_3SiC(SiMe_3)_3$ in C_6D_6 in a sealed pyrex NMR tube with a 450 W medium-pressure Hg lamp produced an approximately 1:1 mixture of silylene complex **1a** and silyl complex **2** in a photostationary state (Scheme 1). When this solution was kept in the sealed tube at room temperature, **1a** reacted with

Scheme 1. Photoreaction of [Cp*W(CO)₃Me] with H₃SiC(SiMe₃)₃,

CO that was produced during photolysis and was completely converted to $\bf 2$ after 4 days. Complex $\bf 1a$ was isolated as a single product in 62% yield when the irradiation was performed with periodic removal of CO gas from the irradiated solution. Similarly, the η^5 -C₅Me₄Et analogue $\bf 1b$ was isolated in 44% yield. Isolated $\bf 1a$ reacted quantitatively with CO gas at room temperature to give $\bf 2$. Conversely, $\bf 2$ was completely converted to $\bf 1a$ by irradiation and periodic removal of CO gas.

The ²⁹Si NMR spectrum (C_6D_6) of **1a** exhibits two signals for the silvlene and silvl ligands at $\delta = 275.3$ and -3.6 ppm, respectively. The large downfield shift of the silylene signal, which is comparable to that of reported hydrido(hydrosilylene) complexes such as [(Et₃P)₃(H)₂Ir=Si(H)(2,6- $Mes_2C_6H_3)]B(C_6F_5)_4$ ($\delta = 239.3 \text{ ppm}$), suggests that the silicon atom of the silvlene ligand in **1a** is essentially sp² hybridized. The ¹H NMR spectrum (C₆D₆) of **1a** shows signals for SiH and WH groups at $\delta = 10.39$ (${}^{1}J_{\text{SiH}} = 154.9 \text{ Hz}$) and -10.67 ppm (${}^{1}J_{WH} = 64.9$ Hz), respectively. The significant downfield shift of the SiH signal is consistent with sp² hybridization of the silicon atom. Importantly, the ${}^2J_{SiH}$ coupling constant (28.6 Hz) observed for the WH signal implies the existence of direct interaction between the hydrido and silvlene ligands.^[13] Note that there is no indication of such $[{PhB(CH_2PPh_2)_3}(H)_2Ir=Si(H)R]_{,[9]}$ interaction for $[(Et_3P)_3(H)_2Ir=Si(H)R']B(C_6F_5)_4$, [11] and the related tungsten [Cp*(Me₂PCH₂CH₂PMe₂)(H)₂W=SiMe₂]Bcomplexes $(C_6F_5)_4^{[4]}$ and $[Cp*(CO)_2(H)W=SiPh_2(py)]$ (py = pyridine).^[5] In the ¹³C NMR spectrum, 1a shows a single resonance for carbonyl groups at $\delta = 231.8$ ppm at room temperature, while two signals are observed at $\delta = 233.0$ and 235.3 ppm at 183 K in $[D_8]$ toluene $(\Delta G_{213K}^{\dagger} = 41 \text{ kJ mol}^{-1}, \text{ determined by the})$ coalescence-point method). This result indicates that rapid exchange of carbonyl groups occurs in 1a at room temperature. In the IR spectrum, the v_{CO} bands for **1a** (1928 and 1853 cm⁻¹) appear at higher energy than those of $[Cp*(CO)_2(H)W=SiPh_2(py)]$ (1892 and 1806 cm⁻¹).^[5] This is apparently attributable to stronger back-donation to the silylene ligand in $\bf 1a$, which leads to weaker back-donation to the carbonyl ligands. The ν_{SiH} band appears at 2052 cm⁻¹. A weak and broad absorption observed at 1589 cm⁻¹ can be assigned to the WH group, interaction of which with the silylene ligand dramatically reduces the strength of the W–H bond.^[14]

The solid-state structure of **1b** was determined by X-ray crystal structure analysis (Figure 1).^[15] Selected bond lengths and angles are listed in Table 1. The tungsten atom in **1b**

adopts a distorted four-legged piano-stool structure, in which the hydrido and silylene ligands occupy the mutually *cis* positions. The W–Si(1) bond length (2.3703(11) Å) is shorter than those of known silyltungsten complexes (2.469–2.653 Å). This length is even shorter than that of the donor-free silyl(silylene)tungsten complex [Cp*W(CO)₂(=SiMes₂)(SiMe₃)] (2.3850(12) Å), do not consider that of the donor-free silyl(silylene)tungsten complex [Cp*W(CO)₂(=SiMes₂)(SiMe₃)] (2.3850(12)

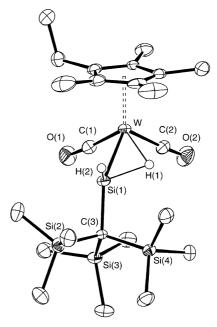


Figure 1. ORTEP plot of 1 b. Thermal ellipsoids are drawn at the 50% probability level.

cationic [Cp*(Me₂PCH₂CH₂PMe₂)(H)₂W=SiMe₂]B(C₆F₅)₄ (2.358(2) and 2.354(3) Å). ^[4] The W–H bond is oriented toward the empty p orbital on the silicon atom of the silylene ligand. Although it is generally difficult to discuss M–H and Si–H interactions on the basis of X-ray structures, the W–H(1) and Si(1)–H(1) distances of 1.82(7) Å and 1.71(6) Å, respectively, in **1b** are both within the range in which a bonding interaction between two atoms exists. ^[13] The Si(1)-W-H(1) and W-Si(1)-H(1) angles are 46(2) and 50(2)°, respectively. These angles and the W–H and Si–H distances

Table 1: Selected bond lengths [Å] and angles [°] for the X-ray crystal structure of 1 b and the energy-minimized structure of 1'.

	16	1′
W-Si(1)	2.3703(11)	2.377
W-H(1)	1.82(7)	1.85
Si(1)-H(1)	1.71 (6)	1.71
Si(1)-H(2)	1.54(7)	1.50
W-C(1)	1.950(5)	1.97
W-C(2)	1.964(5)	1.98
Si(1)-W-H(1)	46(2)	46
W-Si(1)-H(1)	50(2)	51
W-Si(1)-C(3)	141.4(1)	135
W-Si(1)-H(2)	110(3)	121

in **1b** strongly indicate the existence of significant interligand interaction between the silylene and the hydrido ligands. Nevertheless, pyramidalization of the Si(1) atom is very small; the Si(1), W, H(2), and C(3) atoms are almost coplanar, and the sum of the valence angles around Si(1) excluding H(1) is 357(3)°. Therefore, **1** has an unprecedented structure in which a hydrido ligand bridges the W=Si bond.

This structural view of **1** was well reproduced by molecular orbital calculations. A DFT calculation at the B3LYP level was performed for model complex [Cp(CO)₂(H)W=Si(H){C(SiH₃)₃]] (**1**').^[17] The structural parameters of the energy-minimized structure of **1**' are in good agreement with those of the X-ray crystal structure of **1b** (Table 1). The overlap populations, Wiberg bond indexes,^[18a] and NLMO/NPA bond orders^[18b] all indicate a significant interaction between the H atom of the WH group and the Si atom of the silylene ligand; for example, NLMO/NPA bond orders: 1.518 for W–Si, 0.511 for W–μ-H, and 0.476 for Si–μ-H. These data are rationalized by the existence of two bonding interactions, that is, the normal two-centered, two-electron (2c–2e) W–Si bond and the 3c–2e W-H-Si bond in the W-H-Si moiety of **1**', according to NBO analysis.^[18c]

Complex ${\bf 1a}$ reacted with one molar equivalent of acetone in C_6D_6 at room temperature over 1 h to give mainly the hydrosilylation product $[Cp^*(CO)_2(H)W=Si(OCHMe_2)-\{C(SiMe_3)_3]]$ (3) together with a few unidentified products. Complex ${\bf 3}$ was characterized by 1H , ^{13}C , and ^{29}Si NMR spectroscopy. $^{[19]}$ This result suggests a possible role of the hydrido(hydrosilylene) complex as an intermediate in the hydrosilylation of ketones with trihydrosilane. We are now investigating ${\bf 1a}$ as a catalyst for hydrosilylation reaction.

In summary, **1a** and **b** are the first isolated and structurally characterized hydrido(hydrosilylene) complexes. They exhibit a strong interligand interaction between the hydrido and silylene ligands. Complex **1a** hydrosilylates acetone at room temperature to give **3**. Further studies on the reactivity of **1** are in progress.

Experimental Section

1a: A degassed solution of [Cp*W(CO)₃Me] (100 mg, 0.239 mmol) and $H_3SiC(SiMe_3)_3$ (70 mg, 0.27 mmol) in hexane in a pyrex sample tube with a teflon vacuum valve was irradiated with a 450 W medium-pressure Hg lamp for 2 h at 5 °C. The reaction mixture was degassed at

15 min intervals by a freeze–pump–thaw cycle on a vacuum line. The reaction mixture was filtered through a membrane filter, and volatile substances were removed from the filtrate. The residue was washed with cold hexane (0.3 mL × 3) and dried to give 98 mg (0.15 mmol, 64%) of **1a** as orange crystals. ^1H NMR (300 MHz, C_6D_6): $\delta = -10.67$ (d, 1H, $^1J_{\text{WH}} = 64.9$, $^2J_{\text{SiH}} = 28.6$, $^3J_{\text{HH}} = 1.8$ Hz, WH), 0.37 (s, 27 H, SiMe), 1.90 (s, 15 H, $C_5\text{Me}_5$), 10.39 ppm (d, 1 H, $^1J_{\text{SiH}} = 154.9$, $^2J_{\text{WH}} = 13.3$, $^3J_{\text{HH}} = 1.8$ Hz, SiH). $^{13}\text{C}\{^1\text{H}\}$ NMR (75.5 MHz, C_6D_6): $\delta = 3.9$ (SiMe), 11.4 (C_5Me_5), 24.0 ($C\text{SiMe}_3$), 102.7 ($C_5\text{Me}_5$), 232.4 ppm (CO). $^{29}\text{Si}\{^1\text{H}\}$ NMR (59.6 MHz, C_6D_6): $\delta = -3.6$ (SiMe), 275.3 ppm (WSi, $^1J_{\text{WSi}} = 109.9$ Hz). IR (C_6D_6): $\tilde{\nu} = 2052$ (v_{SiH}), 1928, 1853 (v_{CO}), 1589 cm $^{-1}$ (v_{WH}). Elemental analysis (%) calcd for $C_{22}H_{44}O_2\text{Si}_4\text{W}_1$: C 41.50, H 6.96; Found: C 41.32, H 6.86.

1b: Complex **1b** was obtained as orange crystals by a procedure similar to that for **1a** from $[(\eta^5-C_5Me_4Et)W(CO)_3Me]$ (240 mg, 0.555 mmol) and H₃SiC(SiMe₃)₃ (70 mg, 0.56 mmol). Yield: 160 mg (0.246 mmol, 44%). ¹H NMR (300 MHz, C₆D₆): $\delta = -10.67$ (d, 1 H, $^1J_{WH} = 65.0$, $^2J_{SiH} = 28.3$, $^3J_{HH} = 1.7$ Hz, WH), 0.38 (s, 27 H, SiMe), 0.85 (t, 3 H, $^3J_{HH} = 7.7$ Hz, C₅Me₄CH₂CH₃), 1.90 (s, 6 H, C₅Me₄Et), 1.95 (s, 6 H, C₅Me₄Et), 2.30 (q, 2 H, $^3J_{HH} = 7.7$ Hz, C₅Me₄CH₂CH₃), 10.42 ppm (d, 1 H, $^1J_{SiH} = 155.1$, $^2J_{WH} = 13.7$, $^3J_{HH} = 1.7$ Hz, SiH). 13 C[1 H] NMR (75.5 MHz, C₆D₆): $\delta = 3.8$ (SiMe), 10.9 (C₅Me₄Et), 11.2 (C₅Me₄Et), 16.4 (C₅Me₄Et), 20.0 (C₅Me₄Et), 23.9 (CSiMe₃), 102.0 (C₅Me₄Et), 103.1 (C₅Me₄Et), 108.4 (C₅Me₄Et), 232.1 ppm (CO). 29 Si[1 H] NMR (59.6 MHz, C₆D₆): $\delta = -3.6$ (SiMe), 275.1 ppm (WSi, $^1J_{WSi} = 109.9$ Hz). IR (C₆D₆): $\tilde{\nu} = 2052$ (ν_{SiH}), 1928, 1853 (ν_{CO}), 1589 cm⁻¹ (ν_{WH}). Elemental analysis (%) calcd for C₂₃H₄₆O₂Si₄W₁: C 42.45, H 7.12; Found: C 42.43, H 7.01.

2: A solution of [Cp*W(CO)₃Me] (100 mg, 0.239 mmol) and H₃SiC(SiMe₃)₃ (70 mg, 0.266 mmol) in hexane was irradiated for 2 h at 5 °C in a sealed pyrex tube. After the sample tube had stood for 60 h at room temperature, the reaction mixture was filtered through a membrane filter, and volatile substances were removed from the filtrate. The residue was washed with cold hexane (0.3 mL × 3) and dried to give 79 mg (0.12 mmol, 50%) of **2** as orange crystals. ¹H NMR (300 MHz, C_6D_6): δ =0.49 (s, 27 H, SiMe), 1.58 (s, 15 H, C_5Me_5), 4.37 ppm (s, 2 H, SiH, $^1J_{SiH}$ =179.3 Hz). $^{13}C\{^1H\}$ NMR (75.5 MHz, C_6D_6): δ =-5.0 (CSiMe₃), 5.43 (SiMe), 9.6 (C_5Me_5), 102.2 (C_5Me_5), 223.9 ppm (CO). $^{29}Si\{^1H\}$ NMR (59.6 MHz, C_6D_6): δ =-27.2 (WSi), 0.80 ppm (SiMe). IR (KBr pellet): \tilde{v} =2096 (v_{SiH}), 1982, 1903, 1888 cm⁻¹ (v_{CO}). Elemental analysis (%) calcd for $C_{23}H_{44}O_3Si_4W_1$: C 41.55, H 6.67; Found C 41.85, H 6.69.

Received: July 15, 2003 Revised: September 22, 2003 [Z52383]

Keywords: hydrido ligands · hydrosilylation · silicon · silylene complexes · tungsten

a) T. D. Tilley in *The Chemistry of Organic Silicon Compounds* (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1989, pp. 1415–1477;
b) M. S. Eisen in *The Chemistry of Organic Silicon Compounds*, Vol. 2 (Eds.: Z. Rappoport, Y. Apeloig), Wiley, New York, 1998, pp. 2037–2128.

^[2] a) H. Ogino, Chem. Rec. 2002, 2, 291–305; b) M. Okazaki, H. Tobita, H. Ogino, Dalton Trans. 2003, 493–506.

^[3] J. C. Peters, J. D. Feldman, T. D. Tilley, J. Am. Chem. Soc. 1999, 121, 9871 – 9872.

^[4] S. R. Klei, T. D. Tilley, R. G. Bergman, J. Am. Chem. Soc. 2000, 122, 1816–1817.

^[5] H. Sakaba, M. Tsukamoto, T. Hirata, C. Kabuto, H. Horino, J. Am. Chem. Soc. 2000, 122, 11511–11512.

^[6] B. V. Mork, T. D. Tilley, J. Am. Chem. Soc. 2001, 123, 9702 – 9703.

^[7] K. Ueno, S. Asami, N. Watanabe, H. Ogino, *Organometallics* 2002, 21, 1326–1328.

- [8] S. R. Klei, T. D. Tilley, R. G. Bergman, Organometallics 2002, 21, 3376–3387.
- [9] R. S. Simons, J. C. Gallucci, C. A. Tessier, W. J. Youngs, J. Organomet. Chem. 2002, 654, 224–228.
- [10] B. V. Mork, T. D. Tilley, Angew. Chem. 2003, 115, 371-374; Angew. Chem. Int. Ed. 2003, 42, 357-360.
- [11] J. D. Feldman, J. C. Peters, T. D. Tilley, Organometallics 2002, 21, 4065–4075.
- [12] a) Y. Kawano, H. Tobita, H. Ogino, J. Organomet. Chem. 1992, 428, 125 – 143; b) L.-S. Luh, Y.-S. Wen, H. Tobita, H. Ogino, Bull. Chem. Soc. Jpn. 1998, 71, 2865 – 2871.
- [13] J. Y. Corey, J. Braddock-Wilking, Chem. Rev. 1999, 99, 175–292.
- [14] The calculated W–H stretching frequency (1525 cm $^{-1}$) is close to the experimental value. Accordingly, the ν_{SiD} and ν_{WD} bands of [Cp*(CO)₂(D)W=Si(D){C(SiMe₃)₃}] appear at 1481 and 1142 cm $^{-1}$, respectively.
- [15] **1b**: monoclinic; $P2_1/n$; a=15.9541(5), b=11.8021(3), c=17.2847(5) Å, $\beta=114.6906(14)^\circ$, V=2957.02(15) Å³, Z=4; $C_{23}H_{46}O_2Si_4W$, T=150(2) K, 24833 reflections, 6358 independent reflections ($R_{\rm int}=0.0555$), R1=0.0297 ($I>2\sigma(I)$), wR2=0.0875; $\mu=4.085$ mm $^{-1}$; refinement by full-matrix least-squares methods on F^2 . The positions of the hydrogen atoms of the SiH and the WH groups were located in the Fourier-difference electron-density map and were refined with isotropic thermal parameters. CCDC-214274 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ ccdc.cam.ac.uk).
- [16] Based on a search of the Cambridge Structural Database, CSD version 5.24 (November, 2002).
- [17] The detailed analysis will be presented elsewhere.
- [18] a) K. Wiberg, Tetrahedron 1686, 24, 1083 1096; b) NLMO/NPA (Natural localized molecular orbital/natural population analysis); A. E. Reed, F. Weinhold, J. Chem. Phys. 1985, 83, 1736 1740; c) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO (natural bond orbital), NBO Version 3.1.
- [19] Spectral data of 3: ¹H NMR (300 MHz, C_6D_6): $\delta = -6.12$ (s, 1 H, WH, $^1J_{WH} = 56.0$ Hz, $^2J_{SiH} = 34.0$ Hz), 0.46 (s, 27 H, SiMe), 1.39 (d, $^3J_{HH} = 6.3$ Hz, 6H, OCH Me_2), 1.94 (s, 15 H, C_5Me_5), 4.84 ppm (sept, $^3J_{HH} = 6.3$ Hz, 1 H, OC HMe_2). $^{13}C\{^1H\}$ NMR (75.5 MHz, C_6D_6): $\delta = 6.8$ (SiMe), 11.5 (C_5Me_5), 25.8 (OCH Me_2), 33.6 (CSiMe₃), 68.7 (SiOCHMe₂), 100.9 (C_5Me_5), 225.6 (CO). $^{29}Si\{^1H\}$ NMR (59.6 MHz, C_6D_6): $\delta = -2.1$ (SiMe), 229.2 ppm (WSi, $^1J_{WSi} = 130.8$ Hz).